Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(37): 13332-13338, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37671570

RESUMO

Cationic alkaline-earth complexes attract interest for their enhanced Lewis acidity and reactivity compared with their neutral counterparts. Synthetic protocols to these complexes generally utilize expensive specialized reagents in reactions generating multiple by-products. We have studied a simple ligand transfer approach to these complexes using (NacNac)MgR and ER3 (NacNac = ß-diketiminate anion; E = group 13 element; R = aryl/amido anion) which demonstrates high atom economy, opening up the ability to target these species in a more sustainable manner. The success of this methodology is dependent on the identity of the group 13 element with the heavier elements facilitating faster ligand exchange. Furthermore, while this reaction is successful with aromatic ligands such as phenyl and pyrrolyl, the secondary amide piperidide (pip) fails to transfer, which we attribute to the stronger 3-centre-4-electron dimerization interaction of Al2(pip)6.

2.
Dalton Trans ; 45(13): 5590-7, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26916737

RESUMO

The cationic magnesium moiety of magnesium organohaloaluminate complexes, relevant to rechargeable Mg battery electrolytes, typically takes the thermodynamically favourable dinuclear [Mg2Cl3](+) form in the solid-state. We now report that judicious choice of Lewis donor allows the deliberate synthesis and isolation of the hitherto only postulated mononuclear [MgCl](+) and trinuclear [Mg3Cl5](+) modifications, forming a comparable series with a common aluminate anion [(Dipp)(Me3Si)NAlCl3](-). By pre-forming the Al-N bond prior to introduction of the Mg source, a consistently reproducible protocol is reported. Usage of the green solvent 2-methyltetrahydrofuran in place of THF in the context of Mg/Al battery electrolyte type complexes is also promoted.

3.
Dalton Trans ; 43(38): 14409-23, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24968199

RESUMO

Previously it was reported that activation of (t)Bu2Zn by [(TMEDA)Na(µ-dpa)]2 led to tert-butylation of benzophenone at the challenging para-position, where the sodium amide functions as a metalloligand towards (t)Bu2Zn manifested in crystalline [{(TMEDA)Na(dpa)}2Zn(t)Bu2] (TMEDA is N,N,N',N'-tetramethylethylenediamine, dpa is 2,2'-dipyridylamide). Here we find altering the Lewis donor or alkali metal within the metalloligand dictates the reaction outcome, exhibiting a strong influence on alkylation yields and reaction selectivity. Varying the former led to the synthesis of three novel complexes, [(PMDETA)Na(dpa)]2, [(TMDAE)Na(dpa)]2, and [(H6-TREN)Na(dpa)], characterised through combined structural, spectroscopic and theoretical studies [where PMDETA is N,N,N',N'',N''-pentamethyldiethylenetriamine, TMDAE is N,N,N',N'-tetramethyldiaminoethylether and H6-TREN is N',N'-bis(2-aminoethyl)ethane-1,2-diamine]. Each new sodium amide can function as a metalloligand to generate a co-complex with (t)Bu2Zn. Reacting these new co-complexes with benzophenone proved solvent dependent with yields in THF much lower than those in hexane. Most interestingly, sub-stoichiometric amounts of the metalloligands [(TMEDA)Na(dpa)]2 and [(PMEDTA)Na(dpa)]2 with 1 : 1, (t)Bu2Zn-benzophenone mixtures produced good yields of the challenging 1,6-tert-butyl addition product in hexane (52% and 53% respectively). Although exchanging Na for Li gave similar reaction yields, the regioselectivity was significantly compromised; whereas the K system was completely unreactive. Replacing (t)Bu2Zn with (Me3SiCH2)2Zn shut down the alkylation of benzophenone; in contrast, (t)BuLi generates only the reduction product, benzhydrol. Zincation of the parent amine dpa(H) generated the crystalline product [Zn(dpa)2], as structurally elucidated through X-ray crystallography and theoretical calculations. Although the reaction mechanism for the alkylation of benzophenone remains unclear, incorporation of the radical scavenger TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl radical) into the reaction system completely inhibits benzophenone alkylation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...